This is a premium alert message you can set from Layout! Get Now!

Mastering Sudoku Solver in JavaScript: A Backtracking Approach

Sachin

🧩 Sudoku Solver Algorithm

Mastering Sudoku Solver in JavaScript: A Backtracking Approach


The Sudoku Solver algorithm is designed to solve any valid 9 × 9 Sudoku puzzle using the backtracking technique. The algorithm systematically fills empty cells while ensuring Sudoku rules are followed.

🧠 Understanding the Problem

In a Sudoku puzzle, numbers from 1 to 9 must be placed such that:

  • No number repeats in any row.
  • No number repeats in any column.
  • No number repeats in any 3 × 3 subgrid.

⚙️ Implementation in JavaScript

Below is an efficient JavaScript implementation using backtracking:


const isValid = (board, row, col, k) => {
  for (let i = 0; i < 9; i++) {
    const m = 3 * Math.floor(row / 3) + Math.floor(i / 3);
    const n = 3 * Math.floor(col / 3) + (i % 3);
    if (board[row][i] === k || board[i][col] === k || board[m][n] === k) {
      return false;
    }
  }
  return true;
};

const sudokuSolver = (data) => {
  for (let i = 0; i < 9; i++) {
    for (let j = 0; j < 9; j++) {
      if (data[i][j] === '.') {
        for (let k = 1; k <= 9; k++) {
          if (isValid(data, i, j, `${k}`)) {
            data[i][j] = `${k}`;
            if (sudokuSolver(data)) {
              return true;
            } else {
              data[i][j] = '.';
            }
          }
        }
        return false;
      }
    }
  }
  return true;
};
  

🚀 How the Algorithm Works

1️⃣ Start with an incomplete Sudoku board.
2️⃣ Scan the board for an empty cell.
3️⃣ Try placing a number (1-9) and check if it follows Sudoku rules.
4️⃣ If valid, move to the next empty cell; if not, backtrack and try another number.
5️⃣ Repeat until the board is fully solved or no solution exists.

🛠️ Time Complexity

The worst-case time complexity of this backtracking approach is O(9^(N)), where N is the number of empty cells.

✅ Example Output


  5 3 4 | 6 7 8 | 9 1 2
  6 7 2 | 1 9 5 | 3 4 8
  1 9 8 | 3 4 2 | 5 6 7
  ---------------------
  8 5 9 | 7 6 1 | 4 2 3
  4 2 6 | 8 5 3 | 7 9 1
  7 1 3 | 9 2 4 | 8 5 6
  ---------------------
  9 6 1 | 5 3 7 | 2 8 4
  2 8 7 | 4 1 9 | 6 3 5
  3 4 5 | 2 8 6 | 1 7 9
  

🎯 Applications

  • AI-based Sudoku solvers
  • Constraint satisfaction problems
  • Algorithmic problem-solving training

📌 Conclusion

The Sudoku Solver algorithm is a powerful example of backtracking, demonstrating how systematic trial and error can solve complex puzzles efficiently.

To Top